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New methods are developed for numerical integration over solid angle and volume 
of the Brillouin zone which are suitable for any crystal symmetry and easy to program. 
As examples, angular integrations are applied in the case of cubic, tetragonal, hexagonal, 
and trigonal symmetry, and volume integrations for SC, BCC, FCC, HCP, rhombo- 
hedral and triclinic crystals. Results of numerical tests demonstrate a higher efficiency 
of these new methods compared to methods currently in use. 

I. INTRODUCTION 

An essential step in many solid state physics calculations is the evaluation of 
integrals over solid angle or over volume in the appropriate regions (Brillouin 
Zones-BZ) defined by the symmetry of a crystal. Examples of such problems are 
encountered in the calculation of thermodynamic [l, 21 and electronic [3, 43 
properties. All referenced methods of numerical integration exhibit some disad- 
vantages. First, each method is limited to the crystal symmetry for which it was 
originally designed, and extension to other symmetries is very difficult or 
impossible. Since the algorithms involve a great number of special cases connected 
with subzones and symmetrical positions of some points (e.g., [2]), elaborate 
programming is required. Furthermore, almost all of these methods are slowly 
convergent, because the widely used uniform distribution of sampling points assures 
that only the first degree polynomials are integrated exactly. As will be shown 
below, the methods proposed herein are free of those disadvantages. 

II. INTEGRATION OVER THE SOLID ANGLE 

1. General Formula 

Let us consider the direction average 

<f> = (1/47d Jc,r d2Qf(3 
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of the function f depending on the direction cosines 

F = (2, j, a) = r/l r 1. (2) 

If the function f posesses crystal symmetry, integration over the full &-steradian 
angle (1) can be replaced by integration over the symmetry-irreducible solid 
angle Stir , so that 

A typical symmetry-irreducible angle is a trihedral solid angle, which may 
be characterized by the three vectors Q1 , Qz , Q3 along edges OA’, OB’, Oc’ (see 
Fig. 1). In the examples given below the vectors Qi are defined for some commonly 
used high symmetry crystals (for lower symmetries the irreducible angle may not 
be a trihedral one, but it can always be represented by the sum of a few trihedral 
angles). 

FIG. 1. A typical trihedral solid angle and an elementary tetrahedron of the BZ. 

According to the definition, the element of the solid angle d2G’ may be 
expressed by means of the element of the surface d2S, at the distance 1 r 1 and 
normal to r: 

d2!2 = d2S,Jr2. (4) 

If the element d2S is a surface other than normal, one should project that element 
on the direction of the radius r: 

By means of Eq. (5) the problem of solid angle integration is transformed to surface 
integration. 
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In order to apply this transformation to the integral given in Eq. (3), the angle 
Szr, is intersected by the plane ABC (see Fig. l), which passes through the ends of 
the vectors Q1 , Q2, Q3. If vectors K, are defined as 

KI = Ql, K, = Qz - Ql, K, = 43 - Qz (6) 

then any point of the surface ABC may be expressed in terms of these vectors, 
namely 

r = Kl + rlK2 + 5& (7) 
and surface element 

d2S = (K, x KJ do d(. (8) 

Thus, Eq. (3) may be rewritten as 

where the weighting function W, according to Eqs. (5), (8), and (7) equals 

Thus, the problem of the integration over the irreducible solid angle reduces 
to the integration over the triangle with vertices (0, 0), (0, I), and (1, 1) in the space 
of the variables (7, 5). The variable transformation (7) and weighting function (10) 
are easy to program and quick in execution because, aside from elementary 
arithmetic operations,. only one square root operation is required. 

There presently exist highly efficient numerical methods for integration over the 
triangle. In all the examples given below, the integration formulas given by Hammer 
et al. [5, pp. 135, 1361 are used. They hold exactly for polynomials of at most degree 
N&g (explicitely given for N&g = 1, 2, 3, and 5 in [5]), and represent the integra1 
as the sum of weighted integrands over a set of N,, points (ND = 1, 3, 4, and 7, 
respectively) afhne-symmetrically distributed over the triangle: 

If higher accuracy is necessary, the triangle is divided into (Ndiv)2 equal subtriangles 
and Hammer’s formula is applied to each subtriangle individually. 

This simple method of reducing the solid angle integral to the two-dimensiona 
integral over the triangle is not the only method, nor necessarily the best one. 
In principle, it is possible that another transformation would give a smoother 
weighting function and thus converge more rapidly. General investigation of this 
question is rather difficult; therefore, derivation of only one other transformation 
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based on spherical coordinates is given. Unfortunately, this approach is not as 
general as the previous one, and the derivation must be done separately, although 
similarly, for each symmetry considered. 

2. Application to Crystals of Different Symmetries. Spherical Coordinate Approach 

(a) Cubic crystals. The symmetry-irreducible angle equals 

a!Si* = 47/48 W? 

and may be characterized by the vectors 

QI = (LO, 01, Qz = (1, 1, O)P2, Q3 = (1, 1, 1)/3’/” (13) 

in accordance with the usual definition of symmetry axes. Passing to the second 
method of integration, spherical coordinates are introduced: 

2 = sin 0 - cos y, j = sin 0 * sin q2, 0 = cos 9, (14) 

in terms of which Eq. (3) may be rewritten as 

(15) 

where the integration limit e,,(v) is defined by the condition j = P, i.e., 

t,(y) = cOs(eo(v)) = sin ?/(I + sin2 v)l12. (16) 

By the transformation 
t = cos e (17) 

Eq. (15) becomes of the form of an integral over the triangle for which one side 
is curvilinear: 

(f) = (l/Qn,,) j-or’4 ds, s,“‘q’ dtf(F). 

Further variable transformation from (y, t) to (7, 5): 

r) = 2112 sin q2 
(19) 

5 = f77(?wo(d 

changes Eq. (18) to an integral over the usual triangle; i.e., to Eq. (9) exactly, 
with a weighting function 

w(T), 5) = (4 - 7)4)-1/2. (20) 
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Reciprocal transformation to Eqs. (19) and (17): 

sin y = 77/2112 
cos e = 5/(2 + q2y2 

(21) 

allows one to express F as a function (~7, 5). 

(b) Tetrugonal crystals. The symmetry-irreducible angle equals 

J-221, = h/16, (22) 

and is characterized by vectors 

Ql = (ho, 01, Qz = (1, 1, W’1’2, 43 = (0, 0, I), (23) 

if the z-axis is taken as the fourfold one. 
As in the cubic case, Eq. (9) is obtained by using a spherical transformation. 

Introducing the spherical coordinates, for convenience the y-axis is chosen as 
the polar axis: 

2 = sin 8 * cos y, D = sin 0 * sin y, 9 = ~0~ e. (24) 

By applying the transformation given in Eqs. (24) and (17), Eq. (3) becomes: 

(25) 

where t,,(v) is defined by the condition D = 9. This leads to the same relation as 
Eq. (16). The next transformation (y, t) + (7, 5): 

q = 21/2 sin(y/2) 

5 = ~rl(9ml(d 

leads to Eq. (9) with the weighting function 

(26) 

w(q, 5) = 2/[2 - (1 - 7/2)2]1/2. (27) 

Reciprocal transformation to Eqs. (26) and (17) 

cos ql = 1 - qZ 
cos e = 1 - (22 - q2]/[2 - (1 - q2)2])1/2 

(28) 

allows one to express F as a function of (7, 5). Note that using the transformation 
given in Eq. (19) instead of Eq. (26) for tetragonal crystals would lead to a singular 
weighting function at the boundary of the integration region. 
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(c) Hexagonal crystals. The symmetry-irreducible angle equals 

i-211 = 4rr/24 (29) 
and is characterized by vectors: 

QI = (LO, 01, ~~ = (3V2, l/2,0), Qs = (0, 0, 11, (30) 

where the z direction is along the sixfold axis and the x direction is perpendicular 
to the mirror plane. In order to derive Eq. (9) by means of the spherical trans- 
formation, use is made again of Eqs. (24) and (17), resulting in Eq. (25), where 
t,(q) is now defined by the condition j = 4/31/2, which gives 

t,(y) =.sin v/(3 + sin2 q)li2. (31) 

Next, the transformation given by Eq. (19) leads to the final formula of Eq. (9) with 
the weighting function 

~(7, 5) = 2/[4 - (1 - ~~)~]l/~. (32) 

The reciprocal transformation 

cos y = 1 - 72 
cos e = 5 - {[2 - 772]/[4 - (1 - ?#]}‘/” 

(33) 

allows one to express F as a function of (7, 5). 

(d) Trigonal crystals. The symmetry-irreducible angle 

LA* = 47r/12 (34) 
is defined by the vectors 

Ql = (l,O,O), Q2 = (l/2, 31’212, Oh Qa = (0, 0, 1). (35) 

The derivation of Eq. (9) by means of the spherical transformation is done as in 
= the previous case, but t,,(p)) is now defined by the condition 9 

gives: 
to(y) = sin y/(1/3 + sin2 y)lj2. 

The weighting function in Eq. (9) is 

41, 5) = W/3 - (1 - ~~)~ll’~, 
and the reciprocal transformation is 

cos ql = 1 - 112 

= 2 . 31i2 9 which 

(36) 

cos e = 5 - {[2 - q2]/[4/3 - (1 - ~“)“]}‘/“. 

(37) 

(38) 

5W2312-5 
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3. Numerical Tests 

In order to check the accuracy of this method and to compare the efficiency of 
the different approaches, a series of calculations have been performed. The direction 
average given by Eq. (3) was calculated in the case of the four symmetry-irreducible 
regions considered above. Cubic invariant polynomials were taken as the averaged 
functions for cubic and tetragonal crystals: 

f-1 = 1 
fi = 35i2 +jiy + $32 
f3 = 24 +p + 94 (39 
f4 = 4y2.9 

All of these, with the exception of the first one, are identical with the functions 
0 2.2 9 04 3 02.2.2 3 O,,, used in [I] for tests. 

For tests in hexagonal and trigonal crystals, cylindrical invariant polynomials 
were taken: 

fi=l 
fi = 12 
f3 = 22 +jP (9 
f4 = ty42 + 92) 
f5 = 14 + (3 + 9”)“. 

The results are presented in Table I in the form of relative errors for averages (J;:), 
with respect to the exact values obtained analytically. Three methods are compared: 
The uniform vector distribution (UVD) method of Overton and Schuch [I] and the 
two new methods where one is based on the linear transformation of Eq. (7) and 
the other is based on spherical transformation given in Eq. (14) or (24). The total 
number of points at which the integrand was calculated is designated as Ntot . 
The parameters Neiv and Nde, were described at the end of Section 11.1. 

The high efficiency of the present method is best demonstrated by the example 
No. 14, in comparison with No. 18. At a comparable number of sampling points, 
our results are more accurate by four-five orders of magnitude, due to the 
Hammer’s integration formula of the fifth degree polynomial accuracy. If 
the present method is applied for Nd eg = 1 (see No. 10, 11) for a comparable 
number of points, the accuracy is roughly the same as Overton’s (No. 18), since 
Overton’s uniform distribution of points assures 1st degree polynomial accuracy. 

By comparing No. 3 and 4 with 18, the efficiency of our methods is demonstrated 
in yet another way. Our results, obtained using the 28-point formula, are slightly 
better than Overton’s, using the 489-point formula. 
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A comparison between our methods, based on spherical and linear transfor- 
mation, is done for cubic symmetry (see Examples 1 and 2, 3 and 4, 8 and 9, 13 
and 14, 11 and 10). The spherical transformation method gives slightly better 
results in the case of a small number of sampling points (No. 1 and 2) or low 
N&g (No. 11 and lo), which is connected with smoother weighting functions. In 
the remaining cases, both methods give comparable accuracy. The same rule was 
observed for other symmetries. Since, in the spherical transformation method, 
not only is more computer time necessary to calculate the coordinates and weights, 
but also the method must be reprogrammed for each symmetry, thus the method 
based on linear transformation is best for practical applications. 

Comparing Examples 11, 12, and 13, we can see how accuracy increases with 
increasing N&g at an almost constant level of iVtot . On the other hand, keeping 
the integration formula fixed, the accuracy practically does not depend on the 
magnitude of the irreducible angle (or symmetry), as demonstrated by a series 
of examples No. 14, 15, 16, 17 and No. 3, 5, 6, 7. 

III. INTEGRATION ovm THE VOLUME 

1. General Formula 

Let us consider the average 

(41) 

of the function F over the volume of the Brillouin Zone. We assume the function F 
possesses the crystal symmetry, and therefore, it would be sufficient to integrate 
over the smaller region, the symmetry-irreducible volume Vrl: , a rather complicated 
polyhedron, depending on the symmetry considered. Nevertheless, it is easy to 
develop the general method of integration if we divide the region Vi, into tetra- 
hedrons, the simplest subregions. First, we observe that Vi, can be represented as 
a sum of pyramids, whose bases are parts of the BZ boundary faces and whose 
common vertex is the center of the coordinate system. If the bases are triangles, 
we already have tetrahedrons; other bases always can be divided into triangles. 
(Below we shall give the examples of such decompositions for a few common 
symmetries.) 

Thus, the average (41) can be rewritten as 

(42) 
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where n, is the number of tetrahedrons into which Vi, is divided, and where 

is the average over the jth tetrahedron Y(i). 
Figure 1 will again serve as the illustration of a typical tetrahedron OABC. 

We can take advantage of our experience with solid angle integration if we repre- 
sent the volume element as 

d3k = d% * k2 * dk. cw 

Then 

((F& = (l/V)) s,,, d252 I”’ k2 dkF(k@, 
3 0 

(45) 

where r is the point laying on the base ABC, and therefore given by (7). After 
introducing the dimensionless radius 

5 = k/lrI 

and using (5), (8), (9), we rewrite (45) in the form 

(46) 

where 

(47) 

k(j) = ,$ . (K;) + &” + &‘), (48) 

Wi = [Klj’ . (K$’ x K$‘)]/V(+ (49) 

The last quantity may be calculated immediately 

Wi = 6. (50) 

Thus, the average over tetrahedron (47) was reduced to the one-dimensional 
integral over 5 in the interval [0, l] and the two-dimensional integral over (v, 5) 
for the triangle ((0, 0), (1, 0), (1, 1)). 

As in the case of solid angle integration, a high accuracy numerical procedure will 
be achieved when methods of high polynomial accuracy are utilized. Thus, the 
integral over the triangle will be taken as before, while the integral over the interval 
will be carried out by means of Gauss’ method, in which the ND-point formula 
assures polynomials of at most N&g = (2N, - 1) degree to be integrated exactly. 
As before, the unit interval may be provisionally divided into Ndiv equal sub- 
intervals, if necessary. 
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In the Hammer and Stroud paper [6, Table I], one can find the integration 
formulas for squares, similar to those for triangles, quoted earlier (now 
N&s = 1, 3, 5, 7 with corresponding N, = 1, 4, 9, 12). This allows us to treat 
in representation (42) not only tetrahedrons, but also pyramids with parallelogram 
bases (which is equivalent to a square through an affine transformation) as elemen- 
tary subregions. Examples of such subregions will be given below. In actual appli- 
cation, Eq. (47) is slightly changed in the sense that in the integral over 5, the upper 
limit must be 1 instead of ~7; i.e., the integration over (7, 5) is now to be performed 
on the unit square. This leads to a new value of the coefficient Wj in (47) namely, 

wj = 3. (51) 

The paper of Hammer et al. [5, p. 1361, quoted earlier, also gives integration 
formulas directly for tetrahedron, which are exact for quadratic and cubic poly- 
nomials involving four and five points of evaluation, affinite-symmetrically 
distributed over the tetrahedron. These formulas may be applied to Eq. (43) 
immediately, giving an integration formula with a very low number of sampling 
points. This may be very useful in cases in which crude results are sufficient. 

We shall not explore this possibility in our further application for two reasons. 
First, it would be necessary to divide the tetrahedron into smaller, equal 
tetrahedrons in order to increase the accuracy. But this cannot be done in a unique 
way such as was possible in the triangle and interval cases, and therefore, the pro- 
cedure would introduce arbitrariness into the algorithm. Second, when the function 
of the phonon spectrum wi(k) is to be averaged, polynomials do not approximate 
it well, since it is not an analytical function of k at k = 0 (but it is an analytical 
function of 1 k 1, which favors the use of Eqs. (45) and (47)). 

2. Application to Crystals of Different symmetries 

(a) The simple cubic lattice (SC). The BZ for this lattice is a cube, whose 
symmetry-irreducible region is a tetrahedron. Its triangular base is l/8 of the square 
face of BZ. Table II contains all the data necessary to perform calculations 
according to Eqs. (42) and (47). 

(b) The body centered cubic lattice (KC). The BZ is a regular dodecahedron, 
whose rhombic faces are perpendicular to the (110) (and equivalent) directions. 
The symmetry-irreducible region is a tetrahadron, whose base is l/4 of one of the 
BZ faces. See Table II for details. 

(c) The face centered cubic lattice (FCC). The BZ boundary consists of six 
,quadratic faces (perpendicular to the fourfold axes) and eight hexagonal ones 
(perpendicular to threefold axes). Therefore, the symmetry-irreducible region may 
be represented as the sum of one tetrahedron (whose triangular base is l/8 of the 
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square face, denoted by j = 1 in Table II) and of one pyramid (whose tetragonal 
base is l/6 of the hexagonal face). The last is divided into two tetrahedrons 
(j = 2, 3). 

TABLE II 

Vectors and Coefficients Describing the Subregions of Integration for some Crystal Lattices* 

Latt. n, j Ki” 

SC 1 1 (11% 0, 0) 

BCC 1 1 (l,O,O) 

FCC 3 1 (1, l/2,0) 
2 (1, w, 0) 
3 (1, l/TO) 

HCP 2 1 (0, 0,4WN 
2 (0, -1/31/a, 0) 

Tric 3 1 w, ---1/T ---1/a 
2 [---1/T l/2, --1/a 
3 [---1/T --1/T l/21 

Rhh 1 1 l--1/2, -t/2, l/21 

a l/2,0> (0, 0, l/2) 6 1 

(---1/2, l/2,0) (0, 0, l/2) 6 1 

(0, -l/4, l/4) (0, -l/4, -l/4) 6 218 
(-l/4, l/4,0) (-l/4, -l/4, l/2) 6 3/g 
(---1/T 0, U2) (l/2, -l/4, -l/4) 6 318 

(0, -1/31/a, 0) (l/3,0,0) 6 l/3 
(l/3,0,0) (0, 0,4QcN 3 213 

D, LOI lO,Q 11 3 l/3 
D, 0, 11 [l, QOI 3 l/3 
[I, O,Ol 10, 1,Ol 3 l/3 

u, 0901 10, 1901 6 1 

LI In the case of Wj = 3 the integration over (7, 5) in (47) must be extended to the unit square. 
Vector coordinates in the round brackets are given in the Cartesian system, in units of (2r/u); 
coordinates in the square brackets-in the reciprocal lattice vector system. 

(d) The hexagonal close packed lattice (HCP). The BZ is a hexagonal prism, 
whose two bases are perpendicular to the threefold axis, while six sides are perpen- 
dicular to the bases. The symmetry-irreducible region consists of one tetrahedron 
(whose triangular base is l/12 of the hexagonal face; j = 1 in Table II) and of one 
rectangular pyramid (whose base is l/4 of the BZ side; j = 2). 

(e) The triclinic lattice (Tric). The BZ considered in the previous, high-symmet- 
rical lattice cases, was constructed according to the usual rule, which requires each 
BZ face to be perpendicular to some reciprocal lattice vector. This rule, when 
applied to low-symmetrical lattices, would lead to the BZ surface consisting of a 
great number of asymmetric pieces. Therefore, it is preferable to average over anoth- 
er region, that contributes all inequivalent points of k-space, namely, the parallelo- 
piped spanned on the three elementary reciprocal lattice vectors, whose center is 
situated at the center of the coordinate system. Assuming the integrand possesses 
inversion symmetry (as is usual in solid state applications), the symmetry-irreducible 
region consists of three pyramids with parallelogram bases (see Table II). 
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(f) The rhombohedral lattice (Rhh). We chose the same averaging region as in 
the previous case. The symmetry-irreducible part now consists of one tetrahedron, 
whose base is l/2 of the parallelogram face (see Table II). 

3. Numerical Test: The Calculation of the Phonon Spectrum Moments 

In order to demonstrate the efficiency of our method, we performed the calcu- 
lations of some moments of the typical phonon spectrum of the crystal having an 
HCP lattice. We chose phonon dispersion relations wi(k) of molecular hydrogen 
at zero pressure, measured and parameterized by Nielsen [7] within the Born- 
Karman third-nearest-neighbour force model. We have calculated the average 
over the branches and over the BZ: 

The results are presented in Table III in the form of relative errors of these 
quantities for I = - 1, 1,2,3. The exact value of ((02>> has been found analytically, 
as it is possible in the case of the Born-Karman model. For other moments, the 
values obtained in calculation No. 1 (using more than 30,000 points) can be con- 
sidered as “almost exact” for the purpose of calculation of the relative errors. The 
error of ((w2>> assures us that this is a reasonable assumption. The values of 
calculated moments (rounded to four digits) are as follows: 

((w-l>> = 0.1659, ((w> = 6.727, ((w2>> = 48.69, ((w3>> = 372.0, 

w in units of meV. 

TABLE III 

No. 
Integration parameters 

NdiV NdW N tot <<w-9 

Relative errors of 

<<w> <<& 

1 8 50 32768 
2 4 5 3072 
3 3 5 1296 
4 2 5 384 
5 1 5 48 
6 4 3 1024 
7 2 3 128 
8 1 3 16 
9 8 1 1024 

10 4 1 128 

- - 
-l.OE - 7 -2.8E - 8 
-2.7E - 7 -2.3E - 7 

6.9E - 6 -4.4E - 6 
3.1E - 4 -3.5E - 4 
4.1E - 7 2.4E - 5 

-1.5E - 5 4.3E - 4 
-3.8E - 3 l.lE - 2 

1.3E - 3 -5.OE - 4 
5.2E - 3 -2.lE - 3 

1.9E - 11 - 
-9.OE - 8 -1.3E - 7 
-5.3E - 7 -7.2E - 7 
-6.7E - 6 -7.7E - 6 
-9.2E - 4 -8.2E - 4 

2.9E - 5 4.9E - 5 
5.5E - 4 8.6E-4 
1.9E - 2 2.3E - 2 

-9.OE - 4 -1.2E - 3 
-3.8E - 3 -S.3E - 3 

a In this case the integral along the radius f has been calculated with Naw = 7. 
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Table III demonstrates that even with a small number of sampling points, the 
results are of interest; e.g., the 16point integration gives a few percent accuracy 
(No. 8), the 48-point integration is accurate to better than one part in 10s (No.~), 
and so on, up to the accuracy of one part in IO7 for 3000 points (No. 2). 

At a fixed total number of sampling points Ntot , the calculation with a higher 
degree of polynomial accuracy Ndeg gives noticeably better results (compare 
No. 10 with 7, also 9 with 6 and 3). This is demonstrated in Fig. 2, where 
relative errors E of ((w”>> versus Ntot are plotted for three different N&s . We see 
that the calculated points are fairly well represented by 

E = C . N&Ndeg+1)/3 (53) 

with a coefficient C of the order of one. Equation (53) is a three-dimensional 
analog of the error formula for the Gauss method. It is interesting that the cal- 
culated errors are well described by Eq. (53) even for small values of Nt,,t , as can 
be seen from Fig. 2. 

-2 

-8 

FIG. 2. The relative error E of <<wa>> versus the total number of sampling points Ntot . Points 
calculated according to the integration formula with N deg = 5,3, and 1 are denoted by 0, + and 
0, respectively. Line a representes Q N N$p, 6 - E - N;$, and c - s - N$‘. 

4. Integration with the Density of Points Increasing towards the Center of BZ 

In the previous examples of integration over the BZ the integrands at different 
points of the BZ were of the same order of magnitude. However, calculating some 
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thermodynamic properties (e.g., specific heat C,(T)) one finds a quite different 
situation. The integrand is practically zero beyond some region around the center. 
The dimension of this region diminishes with decreasing temperature, and 
becomes small compared to the dimensions of the BZ for temperatures much 
smaller than the Debye temperature. In order to efficiently integrate such functions, 
using the same formula both for high and low temperatures, the density of sampling 
points should strongly increase towards the center of BZ. 

In [2], this problem was considered in detail, and two methods which obey the 
stated requirement were developed: the concentric region method (CRM) and 
the Gauss method (GM). 

Equation (47) for integration over the BZ may be easily generalized to a form 
equivalent to CRM as follows. Performing the integration over 5 along the 
radius, we divide the interval [0, l] into N subintervals, whose lengths decrease 
towards the beginning (instead of the equal subintervals as used previously): 

[O, I] = [O, pN-‘I + [pN-‘, pN-21 + [pN-2, pN-31 + *-* + [p”, p”1, (54) 

where the parameter p describes the ratio of the scaling down, p < 1. All other 
prescriptions remain the’same, i.e., to each subinterval Gauss’ formula is applied, 
and to the integrals over (7, 5) Hammer’s formula is used. 

Notice that our approach is immediately applicable to any symmetry (while 
methods of [2] suited FCC and SC lattices only) and there are no difficulties 
regarding the numerous subzones, a description of which is found in [2]. 

In order to compare the efficiency of our method with the methods of [2], we 
have performed a numerical test, evaluating the same function as in [2] 

where 

C(6) = (((x/sinh x)“> (55) 

x = (a/27~) 1 k I/e. 

Calculation of C(0) simulates the evaluation of specific heat, the parameter 19 
means temperature in units of the Debye temperature. 

Calculations were performed for the FCC lattice; the integral over (v, i) was 
taken according to the three-point Hammer’s formula (applied to each of the 
three triangles-see Chapter 111.2, d) and Table II); the scaling factor was chosen 
p = 0.2, the number of subintervals N = 1, 2, 3, 5; the integration over each 
subinterval according to the four-point Gauss’ formula, applied twice (to each 
half of a subinterval). Thus, the total number of the sampling points was Z&t = 
72, 144, 216, 360, respectively. For each case of N we were seeking the minimal 
temperature em , such that for 0 >, 0, , the function C(t9) is calculated with suffi- 
cient accuracy, i.e., with a relative error less than 0.2 %. 
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Our results are presented in Fig. 3, together with the results of [2, Fig. 21. One 
immediately sees that our method allows a specific heat to be calculated at lower 
temperatures and at a smaller number of sampling points. Though geometrically 
it is completely equivalent to CRM of [2], it owes its higher efficiency to the Gauss’ 
and Hammer’s formulas of integration, as was noted in the previous examples. 

-1 

FIG. 3. The limiting temperature 0, versus the total number of sampling points Ntot . Points 
from our calculations are denoted by q ; from [2] according to CRM by +, and GM by O. 

IV. SUMMARY 

The evaluation of the solid angle integral over the symmetry-irreducible part 
of the BZ is reduced to the evaluation of the integral over a triangle. The variable 
transformation and weighting function involved are easily programmed. Examples 
of the geometrical information allowing one to apply this transformation to crystals 
of cubic, tetragonal, hexagonal, and trigonal symmetry are given. The numerical 
tests convincingly demonstrate high efficiency of the method, if .Hammer’s formula 
[5] of high degree polynomial accuracy is used for the evaluation of the integral 
over a triangle. 

For volume integration, the BZ should be divided preliminarily into elementary 
subregions, tetrahedrons. This procedure, together with all necessary geometrical 
information, is demonstrated by examples given for ST, BCC, FCC, HCP, rhombo- 
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hedral, and triclinic structures. The integral over any tetrahedron is represented 
as the integral over a standard triangle and the integral over the unit interval. If 
the first is evaluated according to Hammer’s formula [5 1, and the second according 
to Gauss’ formula, then a rapid convergence is obtained, as is shown by numerical 
tests. 

Combining this method with construction of a formula for increasing density 
of sampling points towards the center of the BZ, leads to accurate calculation of 
some thermodynamic properties. 
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